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MULTILEVEL MONTE CARLO (MLMC) SIMULATIONS: PERFORMANCE RESULTS

FOR SPE10 (XY SLICES)

DELYAN KALCHEV AND PANAYOT S. VASSILEVSKI

Abstract. In this report we first describe a generic multilevel Monte Carlo method and then
illustrate its superior performance over a traditional single-level Monte Carlo method for second
order elliptic PDEs corresponding to two-dimensional layers in (x, y)-direction of the Tenth SPE
Comparative Solution project (SPE 10) which gives high-contrast permeability coefficients. The
SPE10 data set is used as a coarse level in the Monte Carlo method and the respective permeability
coefficient k (provided in the SPE10 dataset) is used as a mean in the simulation. The actual
coefficients are drawn based on a KL-expansion assuming that the log-mean is perturbed by a
log-normal distributed samples.

1. A generic multilevel Monte Carlo method

We present here a short description of the multilevel Monte Carlo (MLMC) method originated in
its present form in [2] (although these ideas have been around since the introduction of multigrid,
cf. e.g., [1]). The exposition below is based on [3] for verification purposes.

Let XM : Ω → RM be a random vector over some probability space (Ω,F , P) and consider a
quantity of interest QM = G(XM ), for a given functional G(·). Assume also that E[QM ] can be
made arbitrarily close to E[Q] by choosing M sufficiently large. Our goal is to efficiently estimate
E[QM ] (which approximates the unknown value E[Q]). For this purpose, we compute an estimator
Q̂M and quantify its accuracy using the root mean square error (RMSE)

e(Q̂M ) =
(

E
[(

Q̂M − E[Q]
)2
])1/2

.

The quantity e2(Q̂M ) is sometimes called mean square error (MSE). For some given small parameter
ε, we construct an estimator which is accurate enough so that e(Q̂M ) ≤ ε. The computational cost,
Cε(Q̂M ), of achieving this accuracy is called ε-cost.

1.1. Monte Carlo simulation. The standard Monte Carlo (MC) estimator is defined as

Q̂MC
M,N =

1
N

N∑
i=1

Q
(i)
M ,

where Q
(i)
M , i = 1, . . . , N , are independent samples of QM . We assume that the cost of computing

one sample is C(Q(i)
M ) = O(Mγ), for some γ > 0. The optimal cost is when γ = 1.

We have for the error

(1.1.1) e2(Q̂MC
M,N ) = V[Q̂MC

M,N ] + (E[QM −Q])2 = N−1V[QM ] + (E[QM −Q])2 .
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The first term in (1.1.1) is the variance of the estimator. In the applications we consider, M is a
spatial discretization parameter and QM is a quantity that approximates the inaccessible quantity Q.
QM is computed by solving a discretized PDE (partial differential equation) whereas Q corresponds
to the solution of the respective continuous PDE. Thus, the second term in (1.1.1) represents the
error due to discretization and represents a bias of the estimator. We concentrate on the first term
in the MSE (1.1.1) and we note that the second term can be analyzed in some model situations
([3]). Under the assumption that M is sufficiently large we can assume that (E[QM −Q])2 ≤ ε2/2.
Then, N−1V[QM ] ≤ ε2/2 is sufficient for the desired e(Q̂MC

M,N ) ≤ ε. Clearly, the ε-cost for achieving
this is

Cε(Q̂MC
M,N ) '

2V[QM ]C(Q(i)
M )

ε2
.

1.2. Multilevel Monte Carlo simulation. Neglecting the bias term (the second term) in (1.1.1),
we see that the RMSE of the Monte Carlo estimator, as an approximation of E[QM ], is of order
N−1/2. This reflects the (very) slow convergence of the standard Monte Carlo method – a main
disadvantage additionally amplified by the high cost of sampling from QM which involves solving
discretized PDE for each sample (which can be a challenging task on its own).

Here we present the multilevel Monte Carlo (MLMC) method as a variance reduction technique.
The latter means that for a fixed cost the MLMC method has the ability to produce approximations
with lower variance compared to the standard Monte Carlo method (for the same cost). This is
achieved by reducing the cost of the simulation using multiple approximations of Q on a hierarchy
of levels. In contrast, the standard Monte Carlo uses one approximation, QM . In terms of our PDE
applications this means that multiple (coarse) levels (meshes) are used for sampling instead of using
only the finest one. The heuristic behind this approach is that the uncertainty can be captured
accurately enough on coarse grids. Thus, the majority of the samples can be produced for lower
cost on coarser levels and only a little correction between levels is necessary resulting in an overall
smaller number of fine-level (high-cost) samples.

Consider a sequence of discretization parameters {M` ∈ N : ` = 0, . . . , L and M0 < M1 < · · · < ML = M},
and the corresponding quantities {QM`

}L
`=0. Let s ≥ 2 be the coarsening factor, i.e. M` ' sM`−1,

for ` = 1, . . . , L. Define Y` = QM`
−QM`−1

, for ` = 1, . . . , L, and Y0 = QM0 . Using the additivity
of the expectation, E, we get the following telescoping sum

(1.2.1) E[QM ] = E[QM0 ] +
L∑

`=1

E[QM`
−QM`−1

] =
L∑

`=0

E[Y`].

The terms E[Y`] in (1.2.1) are approximated using standard MC estimators Ŷ`. Namely,

(1.2.2) Ŷ` =
1

N`

N∑̀
i=1

Y
(i)
` =

1
N`

N∑̀
i=1

(
Q

(i)
M`

−Q
(i)
M`−1

)
, for ` = 1, . . . , L

and

Ŷ0 =
1

N0

N0∑
i=1

Y
(i)
0 =

1
N0

N0∑
i=1

Q
(i)
M0

,

where N`, ` = 0, . . . , L, are the numbers of samples on the respective level. Note that the estimators
(1.2.2) require sampling from Y` = QM`

− QM`−1
, which formally means that the quantities Q

(i)
M`

and Q
(i)
M`−1

in Y
(i)
` = Q

(i)
M`

−Q
(i)
M`−1

are computed using the same random sample.

Finally, the multilevel Monte Carlo estimator is defined as

Q̂ML
M =

L∑
`=0

Ŷ`.
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Similarly, for the MSE, we have

(1.2.3) e2(Q̂ML
M ) = V[Q̂ML

M ] + (E[QM −Q])2 =
L∑

`=0

N−1
` V[Y`] + (E[QM −Q])2 .

Like before, the first term in (1.2.3) is the variance of the estimator and the second term is the bias
which is the same as the bias term in (1.1.1). That is, Q̂ML

M is a biased estimator of E[Q] with the
same bias as the standard MC estimator. However, (like in the standard MC) Q̂ML

M is an unbiased
estimator of E[QM ].

The major source of cost reduction is the fact that V[Y`] becomes smaller as M` becomes finer.
Thus, fewer finer (higher cost) samples are necessary to achieve the desired magnitude of the error.

Denote by C` = C(Y (i)
` ) the cost of computing a single sample of Y`. Note that, for ` ≥ 1, C` includes

sampling once on level ` and once on ` − 1. Thus, we can estimate C` using the sum Mγ
` + Mγ

`−1

and also Mγ
0 can be used as an estimate of C0.

Based on optimality considerations ([3]), we can assume that the order of N` should be
√

V[Y`]/C`,
i.e. N` h

√
V[Y`]/C`. Hence, N−1

` V[Y`] h
√

V[Y`]C` and
L∑

`=0

N−1
` V[Y`] h

L∑
`=0

√
V[Y`]C`.

The unknown V[Y`] can be estimated using the unbiased sample variance estimator (using the fact
that the samples Y

(i)
` are independent)

V[Y`] ≈ s2
Y`

=
1

N` − 1

N∑̀
i=1

(
Y

(i)
` − Ŷ`

)2
=

1
N` − 1

(
N∑̀
i=1

(
Y

(i)
`

)2
−N`Ŷ

2
`

)
.

1.3. The MLMC for a model problem. Consider the PDE

(1.3.1) −∇ · (k(x, ω)∇p(x, ω)) = f(x) in D × Ω,

subject to suitable boundary conditions. Here D ⊂ R2 is a rectangular spatial domain. Both
the coefficient (the hydraulic conductivity) k and the solution p are random fields on D × Ω. We
discretize (1.3.1) using the finite element method and thus obtain discrete solution ph. Particularly,
we use bilinear finite elements on rectangular meshes and, also, for the multilevel estimator we use
standard geometric levels constructed by uniform mesh refinement.

The quantity Q is generally some functional of the solution p and the coefficient k. Similarly, the
quantity QM is the same functional of the discrete solution ph and the possibly also discretized
coefficient k. Then, the parameter M represents the number of degrees of freedom (dofs) of the
finite element space. Note that sampling from QM , in the general case, requires numerical solution
of the discretized PDE, which is the reason for the high cost of drawing samples of QM . Also,
obtaining samples of the solution in turn requires sampling from the coefficient.

A popular choice is to model k as a log-normal random field with a two-point correlation structure.
To this purpose, we use the following two-point covariance function

(1.3.2) C
(
x,x′

)
= σ2 exp

(
−|x1 − x′1|

λ1
− |x2 − x′2|

λ2

)
, for x,x′ ∈ D,

where σ2 is the variance of the stochastic field, λj is the correlation length in the jth direction, and
the notation x = [x1, x2]T is used.
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Consider the Gaussian random field Z(x, ω) = ln[k(x, ω)]. Using the Karhunen-Loéve (KL) expan-
sion ([4]), we have

(1.3.3) Z(x, ω) = E[Z(x, ·)] +
∞∑

n=1

√
θnξn(ω)bn(x),

where {ξn}n∈N are independent standard normal random variables and (θn, bn)n∈N are eigenpairs
of the integral equation

(1.3.4)
∫

D
C
(
x,x′

)
bn(x′) dx′ = θnbn(x), for x ∈ D,

and ‖bn‖L2(D) = 1, for n ∈ N. Note that E[Z(x, ·)] in (1.3.3) is a function of x and represents the
mean of the random field Z.

In practice we use a truncated version of the KL-expansion where a finite number, mKL, of terms
of the expansion are computed. That is, we have

(1.3.5) ZmKL(x, ω) = E[Z(x, ·)] +
mKL∑
n=1

√
θnξn(ω)bn(x),

where the first mKL eigenpairs with dominating eigenvalues θn, n ≤ mKL, are taken. Thus, drawing
(approximate) samples of k requires simply drawing mKL independent samples from standard normal
distribution for {ξn}mKL

n=1 , then evaluating ZmKL from (1.3.5), and finally computing the sampled
coefficient

kmKL = exp [ZmKL ] .
Note that the number of terms in the truncated KL-expansion (1.3.5) affects the bias ([3]). There-
fore, to have a good approximation, large mKL is required (related to the choice of the discretization
parameter M).

To perform the above computation we need the eigenpairs of (1.3.4). For our special choice of
kernel (1.3.2) the eigenpairs can be computed analytically ([3, 4]) by using separation of variables
reducing to one-dimensional computations. More specifically, let σ2 = 1 and denote the intervals
(0, a) by Ia, a > 0. Then, in the 1D case D = I1 we have

C(I1,λ)

(
x, x′

)
= exp

(
−|x− x′|

λ

)
, for x, x′ ∈ I1,

and ∫ 1

0
C(I1,λ)

(
x, x′

)
b(I1,λ)
n (x′) dx′ = θ(I1,λ)

n b(I1,λ)
n (x), for x ∈ I1,

where

θ(I1,λ)
n =

2λ

λ2ω2
n + 1

,

b(I1,λ)
n (x) = An (sin(ωnx) + λωn cos(ωnx)) , for x ∈ I1.

Here An is a normalization constant so that ‖b(I1,λ)
n ‖L2(0,1) = 1 and {ωn}n∈N are the real solutions

of the transcendental equation

tan(ω) =
2λω

λ2ω2 − 1
.

Consider now the case D = Ia and the transformation x = aξ, where ξ ∈ I1 and x ∈ Ia. Clearly,
we have

C(Ia,λ)

(
x, x′

)
= C(Ia,λ)

(
aξ, aξ′

)
= C(I1,λ/a)

(
ξ, ξ′

)
.

We are interested in the following eigenproblem∫ a

0
C(Ia,λ)

(
x, x′

)
b(Ia,λ)
n (x′) dx′ = θ(Ia,λ)

n b(Ia,λ)
n (x), for x ∈ Ia.
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Since ∫ a

0
C(Ia,λ)

(
x, x′

)
b(Ia,λ)
n (x′) dx′ = a

∫ 1

0
C(I1,λ/a)

(
ξ, ξ′

)
b(Ia,λ)
n (aξ′) dξ′,

we see that

θ(Ia,λ)
n = aθ(I1,λ/a)

n ,

b(Ia,λ)
n (x) =

1
a

b(I1,λ/a)
n

(x

a

)
, for x ∈ Ia.(1.3.6)

Note that 1/a in (1.3.6) normalizes the eigenfunctions so that ‖b(Ia,λ)
n ‖L2(0,a) = 1.

Finally, consider the 2D case (that we are interested in), D = Ia1 × Ia2 , and kernel (1.3.2) (with
σ2 = 1) and the eigenproblem (1.3.4). Clearly, for the eigenpairs we have

θn = θ
(Ia1 ,λ1)
in

θ
(Ia2 ,λ2)
jn

,(1.3.7)

bn(x) = b
(Ia1 ,λ1)
in

(x1) b
(Ia2 ,λ2)
jn

(x2), for x = (x1, x2) ∈ D,

for some in, jn ∈ N. Note that in the general case when σ2 6= 1, the only change necessary is to
multiply the eigenvalues in (1.3.7) by σ2.

The heuristic used in MLMC, i.e., that the uncertainty can be captured accurately enough on coarse
grids in this model problem implies the requirement that the coarsest mesh must provide some level
of resolution of the problem with respect to the correlation length used in the covariance function
(cf., e.g., [3]), that is, the coarsest mesh size, h0, has to be smaller than the correlation length.

In the following experiments, for illustration, we assume γ = 1 (optimal solver) which is realistic for
multigrid solvers. In contrast for sparse direct solvers we can let γ = 1.5. It is clear that when M
grows (the finest mesh is refined) we can expect that the speedup of the MLMC method compared
to the standard MC improves. While clearly the ε-costs of both the MLMC and the standard MC
estimators as functions of ε (with fixed M = ML and L) are of order ε−2, in practice M needs to
be increased as ε ↓ 0 to maintain the bias smaller than ε. Consequently, the speedup of the MLMC
estimator in comparison to the standard MC estimator will increase as ε ↓ 0.

2. Numerical experiments

2.1. Basic experiments. Here we perform experiments similar to the ones in [3] for verification
purposes. We consider equation (1.3.1) with D = I1 × I1 = (0, 1) × (0, 1), f ≡ 0, subject to the
following boundary conditions

p |x1=0 = 1,

p |x1=1 = 0,

∂p

∂n

∣∣∣
x2=0

= 0,

∂p

∂n

∣∣∣
x2=1

= 0.

Additionally, we use an uniform rectangular mesh (m`×m` elements on level M`) and bilinear finite
elements to discretize the PDE. The quantity of interest we use is the (horizontal) flux through the
“outflow” part of the boundary, also referred to as effective (horizontal) conductivity of the region
D, defined as

keff = −
∫ 1

0
k

∂p

∂x1

∣∣∣
x1=1

dx2.

Also, we choose E[Z(x, ·)] ≡ 0 in (1.3.5).
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Figure 2.1.1: Variance, mean, number of samples and cost for γ = 1 (optimal solver), λ1 = λ2 = 0.3,
σ2 = 1, mKL = 1444, m0 = 8.

Fig. 2.1.1a shows that the variance of Q` on different levels is close to constant and the variance
of Y` gets smaller with finer levels and accordingly, as seen in fig. 2.1.1c, the number of samples
decreases as we move to finer and finer levels. Fig. 2.1.1d illustrates the ε-cost of the standard
and multilevel MC methods. The total cost of the simulation is “normalized” in the sense that
it is measured in term of one forward solve on the coarsest grid (which is the same in each case).
Additionally, the y-axis in fig. 2.1.1d is scaled by ε2. Note that, as mentioned above, in fig. 2.1.1d
we take into consideration the fact that smaller values of ε require simulations on finer grids (larger
M).

Consider the case ε = 0.005 on a 32× 32 mesh. Then, the 3-level MLMC estimator gives E[QM ] ≈
1.10079 whereas the standard MC estimator is E[QM ] ≈ 1.09337. The difference is 0.00742, which
is reasonable for the choice of ε = 0.005.

2.2. SPE10 experiments. Here we show experiments incorporating data from the SPE10 dataset.

The 3D domain for the SPE10 dataset has dimensions 1200× 2200× 170 feet and it is divided into
cells of size 20× 10× 2. Thus, the 3D mesh has 60× 220× 85 cells. We consider the 3D domain cut
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into 85 horizontal (parallel to the xy plane) slices and we solve 2D problems corresponding to such
2D slices. The 2D domain has dimensions 1200 × 2200 and it is divided into cells of size 20 × 10
resulting in a mesh with 60× 220 elements (13200 fine-grid elements). The PDE coefficient on each
slice is a scalar function. The original 60× 220 mesh is the coarsest one in our MLMC experiments.
To produce the other (finer) levels, we uniformly refine the initial 2D mesh several times.

We have D = I1200 × I2200 and perform similar to the previous model case tests but here we
use horizontal slices of SPE10 as the mean of the random conductivity field. That is, we take
E[Z(x, ·)] = ln[kSPE10 slice(x)] in (1.3.5), where kSPE10 slice(x) is the SPE10 coefficient for the consid-
ered horizontal slice. We solve (1.3.1) with f ≡ 0 and subject to the following boundary conditions

p |x2=2200 =1,

p |x2=0 =0,

∂p

∂n

∣∣∣
x1=0

=0,

∂p

∂n

∣∣∣
x1=1200

=0.

Furthermore, we use bilinear finite elements to discretize the PDE. The quantity of interest is again
the effective (horizontal) conductivity of the region D which in this case is defined as

keff =
∫ 1200

0
k

∂p

∂x2

∣∣∣
x2=0

dx1.

We also choose a correlation length of 100 feet, i.e. λ1 = λ2 = 100.

Clearly, the sampled coefficients in these experiments are simply products of SPE10 slices and
coefficients sampled using zero mean in (1.3.5). The last is illustrated in fig. 2.2.1. Fig. 2.2.1c
shows a typical sample of the conductivity field used in our simulations while fig. 2.2.1a and 2.2.1b
show the components composing this coefficient. Namely, in fig. 2.2.1a we see the exponent of the
mean of the Gaussian field in (1.3.5) and fig. 2.2.1b shows the exponent of the sum term in (1.3.5).
Similarly, figures 2.2.2, 2.2.3, and 2.2.4 illustrate the same quantities when other slices are used as
the mean.

Likewise, figures 2.2.5, 2.2.6, 2.2.7, and 2.2.8 show results from simulations using SPE10 coefficients
of different slices as mean of the random conductivity fields. We see that the trend is similar to
the previous basis model experiments. We note that the simulations may require smaller number
of samples but a minimum number is enforced so that the variance is approximated accurately
according to the formula. This explains behavior like in fig. 2.2.5c (graphs are “merged” together).

Tables 2.2.1, 2.2.2, 2.2.3, and 2.2.4 show comparison between standard and multilevel MC. We can
observe from our experiments that MLMC demonstrates substantial speedup in comparison to the
standard MC. We point out that executing standard MC for more complex experiments is highly
infeasible as even in our demonstrations single level MC was impractical due to the large amount
of time necessary to complete the simulation process.
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(a) The original slice 0 of SPE10 (logarithmic scale) (b) Conductivity coefficient sampled using zero mean,
σ2 = 1, λ1 = λ2 = 100, and mKL = 1444 (logarithmic
scale)

(c) The final coefficient – a product of (a) and (b) (log-
arithmic scale)

Figure 2.2.1: A sample coefficient composed of slice 0 as mean and a random combination of the
KL-modes, see (1.3.5), on the coarsest 60× 220 mesh.
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(a) The original slice 12 of SPE10 (logarithmic scale) (b) Conductivity coefficient sampled using zero mean,
σ2 = 1, λ1 = λ2 = 100, and mKL = 1444 (logarithmic
scale)

(c) The final coefficient – a product of (a) and (b) (log-
arithmic scale)

Figure 2.2.2: A sample coefficient composed of slice 12 as mean and a random combination of the
KL-modes, see (1.3.5), on the coarsest 60× 220 mesh.
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(a) The original slice 36 of SPE10 (logarithmic scale) (b) Conductivity coefficient sampled using zero mean,
σ2 = 1, λ1 = λ2 = 100, and mKL = 1444 (logarithmic
scale)

(c) The final coefficient – a product of (a) and (b) (log-
arithmic scale)

Figure 2.2.3: A sample coefficient composed of slice 36 as mean and a random combination of the
KL-modes, see (1.3.5), on the coarsest 60× 220 mesh.
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(a) The original slice 84 of SPE10 (logarithmic scale) (b) Conductivity coefficient sampled using zero mean,
σ2 = 1, λ1 = λ2 = 100, and mKL = 1444 (logarithmic
scale)

(c) The final coefficient – a product of (a) and (b) (log-
arithmic scale)

Figure 2.2.4: A sample coefficient composed of slice 84 as mean and a random combination of the
KL-modes, see (1.3.5), on the coarsest 60× 220 mesh.
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Figure 2.2.5: Variance, mean, number of samples and cost when slice 0 is the mean. Parameters:
γ = 1 (optimal solver), λ1 = λ2 = 100, σ2 = 1, mKL = 1444.

# dofs # samples Wall-clock time (hours) E[QM ] ≈
# Standard MC 53361 20611 6.06 0.917358
# Multilevel MC F: 53361 F: 1500 2.88 0.919248

C: 13481 C: 22779

Table 2.2.1: Comparison between standard MC and two-level MC when slice 0 is the mean. The
fine level is the original SPE10 mesh refined once. Parameters: ε = 0.003, γ = 1 (optimal solver),
λ1 = λ2 = 100, σ2 = 1, mKL = 625.
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Figure 2.2.6: Variance, mean, number of samples and cost when slice 12 is the mean. Parameters:
γ = 1 (optimal solver), λ1 = λ2 = 100, σ2 = 1, mKL = 1444.

# dofs # samples Wall-clock time (hours) E[QM ] ≈
# Standard MC 53361 36058 10.53 19.0903
# Multilevel MC F: 53361 F: 1500 4.23 19.0937

C: 13481 C: 38512

Table 2.2.2: Comparison between standard MC and two-level MC when slice 12 is the mean. The
fine level is the original SPE10 mesh refined once. Parameters: ε = 0.035, γ = 1 (optimal solver),
λ1 = λ2 = 100, σ2 = 1, mKL = 625.
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Figure 2.2.7: Variance, mean, number of samples and cost when slice 36 is the mean. Parameters:
γ = 1 (optimal solver), λ1 = λ2 = 100, σ2 = 1, mKL = 1444.

# dofs # samples Wall-clock time (hours) E[QM ] ≈
# Standard MC 53361 51815 15.97 1.92043
# Multilevel MC F: 53361 F: 1746 7.63 1.92158

C: 13481 C: 65016

Table 2.2.3: Comparison between standard MC and two-level MC when slice 36 is the mean. The
fine level is the original SPE10 mesh refined once. Parameters: ε = 0.003, γ = 1 (optimal solver),
λ1 = λ2 = 100, σ2 = 1, mKL = 625.
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Figure 2.2.8: Variance, mean, number of samples and cost when slice 84 is the mean. Parameters:
γ = 1 (optimal solver), λ1 = λ2 = 100, σ2 = 1, mKL = 1444.

# dofs # samples (N`) Wall-clock time (hours) E[QM ] ≈
Standard MC 53361 47093 14.56 60.5969
Multilevel MC F: 53361 F: 1500 6.47 60.6008

C: 13481 C: 56254

Table 2.2.4: Comparison between standard MC and two-level MC when slice 84 is the mean. The
fine level is the original SPE10 mesh refined once. Parameters: ε = 0.06, γ = 1 (optimal solver),
λ1 = λ2 = 100, σ2 = 1, mKL = 625. (F–fine; C–coarse)
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# dofs N` V[Y`] ≈ V[Y`]/N` ≈ E[Y`] ≈ Wall-
clock
time
(seconds)

E[QM ] ≈

2-level MC 0: 13481 0: 7888 0: 0.0933024 0: 1.18284e-05 0: 0.933343
1: 53361 1: 750 1: 6.04015e-05 1: 8.05353e-08 1: -0.0153453 2338 0.917998

3-level MC 0: 13481 0: 8573 0: 0.092807 0: 1.08255e-05 0: 0.926812
1: 53361 1: 750 1: 5.86373e-05 1: 7.8183e-08 1: -0.0155542
2: 212321 2: 375 2: 4.57804e-05 2: 1.22081e-07 2: -0.00184678 4386 0.909411

4-level MC 0: 13481 0: 9960 0: 0.0942711 0: 9.46497e-06 0: 0.923786
1: 53361 1: 750 1: 6.0509e-05 1: 8.06786e-08 1: -0.0154669
2: 212321 2: 375 2: 5.4952e-05 2: 1.46539e-07 2: -0.00207778
3: 847041 3: 187 3: 2.95588e-05 3: 1.58069e-07 3: -0.00508019 7874 0.901161

Figure 2.2.9: Results for increasing number of levels using slice 0 as mean. The coarsest level,
indexed with 0, is fixed. The graph illustrates how the wall-clock time (in seconds) grows with
respect to the number of levels. Parameters: ε = 0.005, γ = 1 (optimal solver), λ1 = λ2 = 100,
σ2 = 1, mKL = 625.

3. Conclusions

The presented MLMC method clearly demonstrates the potential for substantially speeding-up of
practically infeasible by the single level MC expensive simulation of quantities of interest that require
for each sample solution of (discretized) elliptic PDE with random coefficients. The multilevel
approach, considered as a variance reduction technique for Monte Carlo simulations, shows clear
advantages over the stand-alone (single level) MC method in terms of number of floating point
operations and, consequently, in terms of time required to ensure a prescribed bound of the error.
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